Skip to main content
Log in

Phosphorus retention and soil organic carbon in restored and natural freshwater wetlands

  • Published:
Wetlands Aims and scope Submit manuscript

Abstract

Nutrient (e.g., phosphorus) retention is an important function of wetlands that can improve water quality. We examined soil physical and chemical characteristics and phosphorus (P) sorption capacities in three recently restored herbaceous wetlands (RWs) on previously cultivated soils and three adjacent natural forested wetlands (NWs) on Kent Island, Maryland, USA. Our objective was to compare P retention in these two wetland types. As hypothesized, NW soils differed fundamentally in soil chemistry and had significantly higher total organic carbon (TOC) contents than RW soils (5.7±1.7% vs. 1.2±0.1%, respectively, p < 0.05). A number of soil properties (bulk density, pH, labile organic and microbial P, total N, and total N: total P ratios) differed between natural and restored wetlands, as expected from the differences in TOC. Concentrations of pyrophosphate-extractable (organically-bound) Al (Alp) were an order of magnitude larger in NW than in RW soils (2099.1±365.5 vs. 767.0±194.7 kg/ha, respectively). Although past studies have suggested that higher concentrations of organically-bound Al can enhance P sorption, P-sorption capacities were significantly greater in the RW soils, likely due to differences in soil chemistry. In the RWs, 15 soil chemical parameters were significantly correlated with P sorption (based on single factor regression), including residual Al, oxalate-extractable Al and Fe, clay, HCl-extractable Fe and pyrophosphate-extractable Fe (r2=0.90, 0.89, 0.87, 0.85, 0.83 and 0.82, respectively). In contrast, P sorption in the NWs was correlated only with Alp (r2=0.68). As restored wetland soils are likely in transition from a non-hydric to a hydric state, they should be reevaluated periodically to determine the ultimate effects of this transition on their capacity to retain P.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Literature Cited

  • Axt, J. R. 1997. Phosphorus retention and distribution in non-tidal palustrine forested wetlands and adjacent uplands of Virginia. Ph.D. Dissertation, George Mason University, Fairfax, VA, USA.

    Google Scholar 

  • Axt, J. R. and M. R. Walbridge. 1999. Phosphate removal capacity of palustrine forested wetlands and adjacent uplands in Virginia. Soil Science Society of America Journal 63:1019–1031.

    Article  CAS  Google Scholar 

  • Bache, B. W. and F. J. Williams. 1971. A phosphate sorption index for soils. Journal of Soil Science 22:289–300.

    Article  CAS  Google Scholar 

  • Bedford, B. L., M. R. Walbridge, and A. Aldous. 1999. Patterns in nutrient availability and plant diversity of temperate north American wetlands. Ecology 80:2151–2169.

    Article  Google Scholar 

  • Borggard, O. K., S. S. Jorgensen, J. P. Moberg, and B. Raben-Lange. 1990. Influence of organic matter on phosphate adsorption by aluminu and iron oxides in sandy soils. Journal of Soil Science 41:443–449.

    Article  Google Scholar 

  • Bouyoucos, G. J. 1962. Hydrometer method improved for making particle size analysis of soils. Agronomy Journal 54:464–465.

    Article  Google Scholar 

  • Bran and Luebbe, Inc. 1989. Technicon Autoanalyzer II Methods. Technicon Instruments Corporation, Buffalo Grove, IL, USA.

    Google Scholar 

  • Brinson, M. M. 1993. A Hydrogeomorphic Classification for Wetlands, U.S. Army Corps of Engineers, Waterways Experiment Station, vicksburg, MS, USA. Technical Report WRP-DE-4.

    Google Scholar 

  • Bruland, G. L. and C. J. Richardson. 2004. A spatially explicit investigation of phosphorus sorption and related soil properties in two riparian wetlands. Journal of Environmental Quality 33:785–794.

    Article  CAS  PubMed  Google Scholar 

  • Carpenter, S. R., N. F. Caraco, D. L. Correll, R. W. Howarth, A. N. Sharpley, and V. H. Smith. 1998. Nonpoint pollution of surface waters with phosphorus and nitrogen. Ecological Applications 8: 559–568.

    Article  Google Scholar 

  • Carter, M. R. (ed.). 1993. Soil Sampling and Methods of Analysis. Canadian Society of Soil Science. Lewis Publishers, Boca Raton, FL, USA.

    Google Scholar 

  • Confer, S. R. and W. A. Niering. 1992. Comparison of created and natural freshwater emergent wetlands in Connecticut (USA). Wetlands Ecology and Management 2:143–156.

    Article  Google Scholar 

  • Cowardin, L. M., V. Carter, F. C. Golet, and E. T. LaRoe. 1979. Classification of wetlands and deepwater habitats of the United States. U.S. Fish and Wildlife Service, Washington, DC, USA. FWS/OBS-79/31.

    Google Scholar 

  • Craft, C. B,, E. D. Seneca, and S. W. Broome. 1991. Porewater chemistry of natural and created marsh soils. Journal of Experimental Marine Biology and Ecology 152:187–200.

    Article  CAS  Google Scholar 

  • Darke, A. K. and M. R. Walbridge. 1994. Estimating non-crystalline and crystalline aluminum and iron by selective dissolution in a riparian forest soil. Communications in Soil Science and Plant Analysis 25:2089–2101.

    Article  CAS  Google Scholar 

  • Darke, A. K. and M. R. Walbridge. 2000. Al and Fe biogeochemistry in a floodplain forest: implications for P retention. Biogeochemistry 51:1–32.

    Article  CAS  Google Scholar 

  • Dolfing, J., W. J. Chandon, and J. Japenga. 1999. Association between colloidal iron, aluminum, phosphorus, and humic acids. Soil Science 164:171–179.

    Article  Google Scholar 

  • Freese, D., S. E. A. T. M. van der Zee, and W. H. van Riemsdijk. 1992. Comparison of different models for phosphate sorption as a function of the iron and aluminum oxides of soils. Journal of Soil Science 43:729–738.

    Article  CAS  Google Scholar 

  • Gale, P. M., K. R. Reddy, and D. A. Graetz. 1994. Phosphorus retention by wetland soils used for treated wastewater disposal. Journal of Environmental Quality 23:370–377.

    Article  CAS  Google Scholar 

  • Gerke, J. and A. Jungk. 1991. Separation of phosphorus bound to organic matrices from inorganic phosphorus in alkaline soil extracts by ultrafiltration. Communications in Soil Science and Plant Analysis 22:1621–1630.

    Article  CAS  Google Scholar 

  • Grewal, K. S., G. D. Buchan, and R. R. Sherlock. 1991. A comparison of three methods of organic carbon determination in some New Zealand soils. Journal of Soil Science 42:251–257.

    Article  CAS  Google Scholar 

  • Gwin, S. E., M. E. Kentula, and P. W. Shaffer. 1999. Evaluating the effects of wetland regulation through hydrogeomorphic classification and landscape profiles. Wetlands 19:477–489.

    Article  Google Scholar 

  • Hedley, M. J., J. W. Stewart, and B. S. Chauhan. 1982. Changes in inorganic and organic soil phosphorus fractions induced by cultivation practices and by laboratory incubation. Soil Science Society of America Journal 46:970–976.

    CAS  Google Scholar 

  • Hogan, D. M. 2000. A comparison of phosphorus retention and transformation in constructed and natural freshwater wetlands. M.S. Thesis. George Mason University, Fairfax, VA, USA.

    Google Scholar 

  • Ivanoff, D. B., K. R. Reddy, and S. Robinson. 1998. Chemical fractionation of organic phosphorus in selected histosols. Soil Science 163:36–45.

    Article  CAS  Google Scholar 

  • Jordan, T. E., D. F. Whigham, K. Hofmockel, and N. Gerber. 1999. Restored wetlands in crop fields control nutrient runoff. p. 49–60 In Jan Vymazal (ed.) Nutrient Cycling and Retention in Natural and Constructed Wetlands. Backhuys Publishers, Leiden, The Netherlands.

    Google Scholar 

  • Jordan, T. E., D. F. Whigham, K. H. Hofmockel, and M. A. Pittek. 2003. Nutrient and sediment removal by a restored wetland receiving agricultural runoff. Journal of Environmental Quality 32: 1534–1547.

    Article  CAS  PubMed  Google Scholar 

  • Kaiser, K. and W. Zech. 1996. Defects in estimation of aluminum in humus complexes of podzolic soils by pyrophosphate extraction. Soil Science 161:452–458.

    Article  CAS  Google Scholar 

  • Koroleff, F. 1983. Determination of nutrients. p. 125–139 In K. Grasshof, M. Ehrhardt, and K. Kremling (eds.) Methods of Seawater Analysis. Verlag Chemie, Weinheim, Germany.

    Google Scholar 

  • Kuo, S. and D. S. Mikkelsen. 1979. Distribution of iron and phosphorus in flooded and unflooded soils profiles and their relation to phosphorus adsorption. Soil Science 127:18–25.

    Article  CAS  Google Scholar 

  • Lockaby, B. G. and M. R. Walbridge. 1998. Biogeochemistry. Chapter 7. In M. G. Wessina and W. H. Conner (eds.) Southern Forested Wetlands Ecology and Management. Lewis Publishers, Boca Raton, FL, USA.

    Google Scholar 

  • Menzies, N. W., J. A. Skilton, and C. N. Guppy. 1999. Phosphorus storage on effluent irrigated land. Journal of Environmental Quality 28:750–754.

    Article  CAS  Google Scholar 

  • Microsoft Corporation. 1997. Getting Results with Microsoft Office 97. Microsoft Corporation. Redmond, WA, USA. Document No. X03-21975-0397.

    Google Scholar 

  • Mitsch, W. J. 1994. The nonpoint source pollution control function of natural and constructed riparian wetlands. p. 351–361. In W. J. Mitsch (ed.) Global Wetlands: Old World and New. Elsevier, Amsterdam, The Netherlands.

    Google Scholar 

  • Mitsch, W. J. and J. G. Gosselink. 2000. Wetlands. third edition. Van Nostrand Reinhold. New York, NY, USA.

    Google Scholar 

  • Murphy, J. and J. Riley. 1962. A modified single solution method for the determination of phosphate in natural waters. Analytica Chimica Acta 27:31–36.

    Article  CAS  Google Scholar 

  • National Cooperative Soil Survey. 1998. Official Series Description. http://www.statlan.iastate.edu/soils/osd/dat/E/ELKTON.html and http://www.statlan.iastate.edu/soils/osd/dat/E/ELKTON.html

  • Nelson, D. W. and L. E. Sommers. 1982. Total carbon, organic carbon and organic matter. p. 539–579. In A. L. Page, R. H. Miller, and D. R. Kenney (eds.) Methods of Soil Analysis: Part 2— Chemical and Microbiological Properties. Soil Science Society of America, Inc., Madison, WI, USA.

    Google Scholar 

  • Nelson, D. W. and L. E. Sommers. 1996. Total carbon, organic carbon, and organic matter. p. 961–1010. In J. M. Bigham (ed.) Methods of Soil Analysis: Part 3—Chemical Methods. Soil Science Society of America, Inc., Madison, WI, USA.

    Google Scholar 

  • Niswander, S. F. and W. J. Mitsch. 1995. Functional analysis of a two-year-old created in-stream wetland: hydrology, phosphorus retention, and vegetation survival and growth. Wetlands 15:212–225.

    Article  Google Scholar 

  • Novak, J. M., K. C. Stone, A. A. Szogi, D. W. Watts, and M. H. Johnson. 2004. Dissolved phosphorus retention and release from a Coastal Plain in-stream wetland. Journal of Environmental Quality 33:394–401.

    CAS  PubMed  Google Scholar 

  • Paludan, C. 1995. Phosphorus dynamics in wetland sediments. Ph.D. Dissertation. University of Aarhus, Arhus, Denmark.

    Google Scholar 

  • Paludan, C. and H. S. Jensen. 1999. Sequential extraction of phosphorus in freshwater wetland and lake sediment: significance of humic acids. Wetlands 15:365–373.

    Article  Google Scholar 

  • Paludan, C. and J. T. Morris. 1999. Distribution and speciation of phosphorus along a salinity gradient in intertidal marsh sediments. Biogeochemistry 45:197–221.

    Google Scholar 

  • Parfitt, R. L. and C. W. Childs. 1988. Estimation of forms of Fe and Al: A review, and analysis of contrasting soils by dissolution and Mosessbauer methods. Australian Journal of Soil Research 26:121–44.

    Article  CAS  Google Scholar 

  • Pepin, A. L. 1998. The relative importance of hydrology and substrate in the vegetation dynamics of restored freshwater wetlands. Ph.D. Dissertation, George Mason University, Fairfax, VA, USA.

    Google Scholar 

  • Perkin Elmer. 1982. Analytical Methods for Atomic Absorption Spectrophotometry. Norwalk, CT, USA.

  • Ponnamperuma, F. N. 1972. The chemistry of submerged soils. Advances in Agronomy 24:29–96.

    Article  CAS  Google Scholar 

  • Qualls, R. G. and C. J. Richardson. 1995. Forms of soil phosphorus along a nutrient enrichment gradient in the northern Everglades. Soil Science 160:183–198.

    Article  CAS  Google Scholar 

  • Queen Anne’s County, Maryland. May 1997. Soil Survey Update. Interim Report. Queen Anne County. Centreville, MD, USA.

    Google Scholar 

  • Queen Anne’s County Office of Economic Development. 1998. URL: http://qac.org/lclimate/geograph.html

  • Reddy, K. R., R. H. Kadlec, E. Flaig, and P. M. Gale. 1999. Phosphorus retention in streams and wetlands: a review. Critical Reviews in Environmental Science and Technology 29:83–146.

    Article  CAS  Google Scholar 

  • Richardson, C. J. 1985. Mechanisms controlling phosphorus retention capacity in freshwater wetlands. Science 228:1424–1427.

    Article  PubMed  CAS  Google Scholar 

  • SAS. 1996. The SAS System for Windows, Release 6.12. The SAS Institute Inc. Cary, NC, USA.

    Google Scholar 

  • Schuppli, P. A., G. J. Ross, and J. A. McKeague. 1983. The effective removal of suspended matcrials from pyrophosphate extracts of soils from tropical and temperate regions. Soil Science Society of America Journal 47:1026–1032.

    Article  CAS  Google Scholar 

  • Shaffer, P. W. and T. L. Ernst. 1999. Distribution of soil organic matter in freshwater emergent-open water wetlands in the Portland, Oregon metropolitan area. Wetlands 19:505–516.

    Article  Google Scholar 

  • Sokal, R. R. and F. J. Rohlf. 1995. Biometry, third edition. W. H. Freeman and Company, New York, NY, USA.

    Google Scholar 

  • Thomas, G. W. 1982. Exchangeable cations. p. 159–165. (ed.) Methods of Soil Analysis. Part 2. Second edition. Soil Science Society of America, Madison, WI, USA.

    Google Scholar 

  • Vymazal, J. 1995. Algae and Element Cycling in Wetlands. CRC Press, Boca Raton, FL, USA.

    Google Scholar 

  • Walbridge, M. R. 1991. Phosphorus availability in acid organic soils of the lower North Carolina coastal plain. Ecology 72:2083–2100.

    Article  Google Scholar 

  • Walbridge, M. R. 1993. Functions and values of forested wetlands in the southern United States. Journal of Forestry 91:15–19.

    Google Scholar 

  • Walbridge, M. R. and B. G. Lockaby. 1994. Effects of forest management on biogeochemical functions in southern forested wetlands. Wetlands 14:10–17.

    Google Scholar 

  • Walbridge, M. R. and J. P. Struthers. 1993. Phosphorus retention in non-tidal palustrine forested wetlands of the mid-Atlantic region. Wetlands 13:84–94.

    Article  Google Scholar 

  • Wang, N. and W. J. Mitsch. 1998. Estimating phosphorus retention of existing and restored coastal wetlands in a tributary watershed of the Laurentian Great Lakes in Michigan, USA. Wetlands Ecology and Management 6:69–82.

    Article  CAS  Google Scholar 

  • Weller, C. M., M. C. Watzin, and D. Wang. 1996. Role of wetlands in reducing phosphorus loading to surface water in eight watersheds in the lake Champlain basin. Environmental Management 20:731–739.

    Article  PubMed  Google Scholar 

  • Whigham, D. F., M. A. Pittek, K. H. Hofmockel, T. E. Jordan, and A. L. Pepin. 2002. Biomass and nutrient dynamics in restored wetlands on the outer coastal plain of Maryland, USA. Wetlands 22:562–574.

    Article  Google Scholar 

  • wright, R. B., B. G. Lockaby, and M. R. Walbridge. 2001. Phosphorus availability in an artificially flooded southeastern floodplain forest soil. Soil Science Society of America Journal 65: 1293–1302.

    Article  CAS  Google Scholar 

  • Yuan, G. and L. M. Lavkulich. 1994. Phosphate sorption in relation to extractable iron and aluminum in Spodosols. Soil Science Society of America Journal 58:343–346.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hogan, D.M., Jordan, T.E. & Walbridge, M.R. Phosphorus retention and soil organic carbon in restored and natural freshwater wetlands. Wetlands 24, 573–585 (2004). https://doi.org/10.1672/0277-5212(2004)024[0573:PRASOC]2.0.CO;2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1672/0277-5212(2004)024[0573:PRASOC]2.0.CO;2

Key Words

Navigation